
Exchange Stream API

Overview
Sample Application - C#, Java & Node.js
Swagger Definition
Typical Interactions with Stream API:
Connection

Protocol
TCP / SSL Connection

Basic Message Protocol
RequestMessage
ResponseMessage

Status / StatusMessage
ErrorCode

Connection / ConnectionMessage
Authentication / AuthenticationMessage
Subscription / SubscriptionMessage

ChangeMessage
Change Message Segmentation

MarketSubscriptionMessage
Market Filtering / MarketFilter

Example marketSubscription
Market data field filtering / MarketDataFilter

Examples
MC / MarketChangeMessage

Building a price cache
MarketDefinition Fields

OrderSubscriptionMessage
OrderFilter

Example
OCM / OrderChangeMessage

Building an order cache
Example Output of Order Stream Message on Connection/Re-connection
Heartbeat / HeartbeatMessage
Re-connection / Re-subscription
Performance Considerations
Currency Support
Runner Removals on the Order Stream
Identifying Cancelled BSP Bets
Line Markets
Stream API Status - latency
Stream Health
Lapse Status Reason Code Possible Values
Offline Documentation
Known Issues

Overview

The Exchange Streaming API provides low latency access to Betfair Exchange market data allowing you to subscribe to and efficiently track changes to
market, price and order data.

The protocol is based on ssl sockets (normal) with a CRLF json protocol. We publish a definition of the schema of the json messages in the Swagger
.format

We maintain sample code in Java, C# and Node.js here: https://github.com/betfair/stream-api-sample-code

Sample Application - C#, Java & Node.js

A console based C#, Java and Node.js sample application is available for the Market & Order Streaming API and is available via https://github.com/betfair
/stream-api-sample-code

Users wishing to interact with the Streaming API using one of these languages are strongly advised to make use of this sample code.

Swagger Definition

For users wishing to use other languages or develop their own implementation, we provide a swagger schema to allow browsing & code generation.

We recommend using Swagger Code Gen () for generation,http://swagger.io/swagger-codegen/

As a pre-requisite Java version 7 or higher must be installed
Download both:

The Swagger Code Gen jar from: https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.2.1/swagger-
codegen-cli-2.2.1.jar

http://swagger.io/
http://swagger.io/
https://github.com/betfair/stream-api-sample-code
https://github.com/betfair/stream-api-sample-code
https://github.com/betfair/stream-api-sample-code
http://swagger.io/swagger-codegen/
https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.2.1/swagger-codegen-cli-2.2.1.jar
https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.2.1/swagger-codegen-cli-2.2.1.jar

The Swagger Definition from our GitHub repository: https://github.com/betfair/stream-api-sample-code/blob/master/ESASwaggerSchema.
json

Run the following command to view a list of available languages to generate code for: java -jar swagger-codegen-cli-2.2.1.jar
Run the following command to generate the code: java -jar swagger-codegen-cli-2.2.1.jar generate -i ESASwaggerSchema.json -l <LANGUAGE>
-o <OUTPUT_DIRECTORY>

The Swagger editor can also be used to view the domain model

Use File -> Import File and choose the Swagger Definition downloaded from our GitHub repository

Typical Interactions with Stream API:

The typical API interactions are documented below (detail is below this).

Market Stream:

Order Stream:

A few points to note with Swagger:

It's cross platform and we can't control how it works / behaves - but it does save a lot of error prone typing.
Enums and Inheritance are a little flaky:

Enums for error codes / filters etc. are defined but are treated as strings in c# (so you will need to copy definitions from the
swagger spec until this is fixed by swagger).
Inheritance is defined but not generated correctly - you will have to manually manipulate the op=<type> field

In c# JsonCreationConverter is the typical way to model inheritance
In java look at JsonSubTypes

We are not a REST service - so only the swagger generated model package is relevant.

https://github.com/betfair/stream-api-sample-code/blob/master/ESASwaggerSchema.json
https://github.com/betfair/stream-api-sample-code/blob/master/ESASwaggerSchema.json
http://github.com/betfair/stream-api-sample-code/blob/master/ESASwaggerSchema.json

Connection

Protocol

Every message is in json & terminated with a line feed (CRLF):

{json message}\r\n

TCP / SSL Connection

Connection is established with an SSL socket to the following address:

External (SSL):

stream-api.betfair.com:443

Pre-production (beta) endpoint

Json Serializer Setup

As the protocol is CRLF delimited don't forget to turn-off Json pretty printing (C# has this on by default)

Avoiding TIMEOUT on connection

Once you have established a connection you should send a message within 15 seconds to avoid receiving a TIMEOUT error

For releases the following URL should be pre-production (beta) used for integration testing only.

Integration Endpoint

stream-api-integration.betfair.com

Basic Message Protocol

Two base message classes exist:

RequestMessage - These are messages sent to the server.
ResponseMessage - These are messages received from the server.

Every child message type has:

id - A unique counter you should supply on a RequestMessage and which will be supplied back on a ResponseMessage.
op - This identifies the request type and may be used to switch / deserialize correctly

RequestMessage

RequestMessage is the base class for requests from the client; the discriminator is op=<message type>

Key fields:

op=authentication - The AuthenticationMessage - authenticates your connection.
op=marketSubscription - The MarketSubscriptionMessage - subscribes to market changes.
op=orderSubscription - The OrderSubscriptionMessage - subscribes to order changes.
op=heartbeat - The HeartbeatMessage - use if you need to keep a firewall open or want to test connectivity.

ResponseMessage

ResponseMessage is the base class for responses back to the client; the discriminator is op=<message type>

Key fields:

op=connection - The ConnectionMessage sent on your connection.
op=status - The StatusMessage (returned in response to every RequestMessage)
op=mcm - The MarketChangeMessage that carries the initial image and updates to markets that you have subscribed to.
op=ocm - The OrderChangeMessage that carries the initial image and updates to orders that you have subscribed to.

Status / StatusMessage

Every request receives a status response with a matching id.

Key fields:

statusCode - The status of the request i.e success / fail

Note: Any fields representing time and having a long type will represent the UNIX Timestamps (See for conversions) https://currentmillis.com/

RequestMessages

Remember to set op=<message type> - otherwise we can't decode the request
Remember to set id=<unique sequence> - this will let you link requests with responses (these should be logged and provided on
support calls)
Every RequestMessage will receive a StatusMessage with the status of the call (linked by the id that you send).

All errors apart from SUBSCRIPTION_LIMIT_EXCEEDED close the connection

ResponseMessages

As mentioned earlier the id=<request id> and links your request with your response.

ChangeMessages carry the id of the original request that established the subscription

https://currentmillis.com/

SUCCESS - Call processed correctly
FAILURE - Call failed (inspect errorCode and errorMessage for reason)

connectionClosed - Boolean set to true if the connection was closed as a result of a failure
errorCode - The type of error in case of a failure - see the swagger spec / enum.
errorMessage - Additional message in case of a failure
connectionsAvailable – The number of additional connections you can open (populated only in response to authentication requests)

ErrorCode

This categorizes the various error codes that could be expected (these are subject to change and extension)

Category ErrorCode Description

Protocol General errors not sent with id linking to specific request (as no request context)

INVALID_INPUT Failure code returned when an invalid input is provided (could not
deserialize the message)

TIMEOUT Failure code when a client times out (i.e. too slow sending data)

Authenticati
on

Specific to authentication

NO_APP_KEY Failure code returned when an application key is not found in the message

INVALID_APP_KEY Failure code returned when an invalid application key is received

NO_SESSION Failure code returned when a session token is not found in the message

INVALID_SESSION_INFORMATI
ON

Failure code returned when an invalid session token is received

NOT_AUTHORIZED Failure code returned when client is not authorized to perform the operation

MAX_CONNECTION_LIMIT_EX
CEEDED

Failure code returned when a client tries to create more connections than allowed to

TOO_MANY_REQUESTS Failure code returned when a client makes too many requests within a short time period

Subscriptio
n

Specific to subscription requests

SUBSCRIPTION_LIMIT_EXCEE
DED

Customer tried to subscribe to more markets than allowed to - set to 200 markets by default

INVALID_CLOCK Failure code returned when an invalid clock is provided on re-subscription (check initialClk / clk
supplied)

 General General errors which may or may not be linked to specific request id

UNEXPECTED_ERROR Failure code returned when an internal error occurred on the server

CONNECTION_FAILED Failure code used when the client / server connection is terminated

Connection / ConnectionMessage

This is received by the client when it successfully opens a connection to the server

Key fields:

connectionId - This is a unique identifier that you must supply for support.

Initial ConnectionMessage

On establishing a connection a client receives a ConnectionMessage - the connectionId must :be logged & supplied on any support queries

{"op":"connection","connectionId":"002-230915140112-174"}

Authentication / AuthenticationMessage

This message is the first message that the client must send on connecting to the server - you must be authenticated before any other request is
processed.

Key fields:

op=authentication - This is the operation type
appKey - This is your application key to identify your application
session - The session token generated from API login.

Subscription / SubscriptionMessage

This message changes the client's subscription - there are currently two subscription message types:

op=marketSubscription- MarketSubscriptionMessage which streams:
op=mcm - MarketChangeMessage - the price changes for a market

op=orderSubscription- OrderSubscriptionMessage which streams:
op=ocm - OrderChangeMessage - the order changes for a market

On creating a subscription you will receive:

StatusMessage confirming the status of your request
A stream of ChangeMessages linked with the id of the request which is composed of:

Initial image
Deltas to the initial image

It is possible to subscribe multiple times - each replaces the previous (each will send a new initial image and deltas) - they are not additive.

Key fields on a SubscriptionMessage:

segmentationEnabled=true
segmentation breaks up large messages and improves: end to end performance, latency, time to first and last byte
see the topic on change message segmentation for a full explanation of how this works.

conflateMs - Specifies a forced conflation rate (in milliseconds) - : the field value will be 180000 if you access the Stream API using a Please note
Delayed App Key or have an account delay in place when using the Live App Key.
heartbeatMs - Specifies a minimum interval that a client would expect to receive a message (in milliseconds) - bounds are 500 to 5000
milliseconds.

If no change is delivered in this interval then an empty change message will be sent with a ChangeType.HEARTBEAT
initialClk & clk - these two sequence tokens allow for faster recovery in the event of a disconnection:

If supplied (with identical subscription criteria) you will receive a delta to your previous state rather than a full initial image
see the topic on re-subscription for a full explanation of how this works.

ChangeMessage

This message is the payload that delivers changes (both initial image & updates) to a client - there are currently two change message types:

op=mcm - MarketChangeMessage
op=ocm - OrderChangeMessage

Key fields on a ChangeMessage:

ct= ChangeType - this enumeration is used to identify the type of change
SUB_IMAGE - The initial image returned from a subscribe. May also happen while subscription is on-going and should replace local
cache entirely.
RESUB_DELTA - A patch returned from a resubscribe
HEARTBEAT - An empty message published if no data has been sent within heartbeatMs

We send these to maintain the connection to you and detect closed connections
You can use the heartbeatMs to verify that you are still connected

Common Authentication Errors

Some common authentication errors that you should handle - these are defined on ErrorCodes enum (these will all close your connection):

NO_APP_KEY / INVALID_APP_KEY - Check you are using the correct app key
NO_SESSION / INVALID_SESSION_INFORMATION - Check the session is current
NOT_AUTHORIZED - Check that you are using the correct appkey / session and that it has been setup by BDP
MAX_CONNECTION_LIMIT_EXCEEDED - Check that you are not creating too many connections / are closing connections properly.
TOO_MANY_REQUESTS – Check that you are not creating/closing connections too frequently

The Order Changes and Market Changes are being produced by 2 independent systems so we can give no guarantee as to the order in which
they will be sent.

https://docs.developer.betfair.com/pages/viewpage.action?pageId=3834909

<null / not set> - An update message
segmentType - SegmentType - this enumeration identifies multi-part segmented messages:

SEG_START - Start of a segmented message
SEG - Middle part of a segmented message
SEG_END - Last part of a segmented message
<null / not set> - A non-segmented message

conflateMs - the actual conflation being used
This might be different to what you specified - if you account is for instance delayed or your request was out of bounds

status - Stream status: set to null if the exchange stream data is up to date and if the downstream services are experiencing latency503
heartbeatMs - the actual heartbeat being used

This might be different to what you specified as we bounds check
You can use this to verify your connection is live (as you should receive 1 message within this time period).

pt - publishTime - the time we sent the message
initialClk & clk - these two sequence tokens allow for faster recovery in the event of a disconnection:

If we send these then they should be stored
see the topic on re-subscription for a full explanation of how this works.

Change Message Segmentation

The below shows the key interactions for subscription & changes with segmentation applied:

Heartbeat ChangeMessages

heartbeatMs is a guarantee of how often (even with no changes) you will receive a ChangeMessage; i.e.:

If heartbeatMs= 500 and your subscription has not changed in 500ms then we will send an empty ChangeMessage with ct=HEARTBEAT

(this verifies your connection is live and processing data)

Typically on changing your subscription you will want to clear any local cache you maintain.

Initial Image Handling

How can I detect the start of an initial image & clear my cache?

MarketSubscriptionMessage

This subscription type is used to receive price changes for one or more markets; your subscription criteria determine what you see.

A MarketSubscription has two types of filter:

marketFilter - MarketFilter - this is a horizontal filter of markets that you require (i.e. rows)
marketDataFilter - MarketDataFilter - this is a vertical filter of fields that you require (i.e. columns)

Limiting the amount of data that you consume will make your initial image much smaller (and faster) & suppress changes that are uninteresting to you.

Market Filtering / MarketFilter

As with the APING API users have the ability to filter the market data they get from the new Exchange Stream API (ESA).

All subscriptions are evaluated with a few default criteria:

Standard jurisdictional filtering that restricts visibility (mirroring site behavior)
Permissions that control:

Specific sports that you are entitled for
A maximum consumption limit (exceeding this will result in an error with details of the limit: ErrorCode.
SUBSCRIPTION_LIMIT_EXCEEDED)

 Users can then specify the following filters when they subscribe to ESA:

Filter
name

Type Mandatory Description

marketIds Set<String> No If no marketIds passed user will be subscribed to all markets

bspMarket Boolean No Restrict to bsp markets only, if True or non-bsp markets if False. If not specified then returns both BSP and non-BSP markets

bettingTyp
es

Set<Bettin
gType>

No Restrict to markets that match the betting type of the market (i.e. Odds, Asian Handicap Singles, or Asian Handicap Doubles)

eventType
Ids

Set<String> No Restrict markets by event type associated with the market. (i.e., "1" for Football, "7" for Horse Racing, etc)

eventIds Set<String> No Restrict markets by the event id associated with the market.

turnInPlay
Enabled

Boolean No Restrict to markets that will turn in play if True or will not turn in play if false. If not specified, returns both.

marketTyp
es

Set<String> No Restrict to markets that match the type of the market (i.e., MATCH_ODDS, HALF_TIME_SCORE). You should use this instead
of relying on the market name as the market type codes are the same in all locales

venues Set<String> No Restrict markets by the venue associated with the market. Currently only Horse Racing markets have venues.

countryCo
des

Set<String> No Restrict to markets that are in the specified country or countries

raceTypes Set<String> No Restrict to markets of a specific raceType. Valid values are - Harness, Flat,Hurdle, Chase, Bumper, NH Flat, NO_VALUE

Example marketSubscription

For example a subscription message with almost all filters enabled will look something like this:

ct=ChangeType.SUB_IMAGE and segmentType=null or SegmentType.SEG_START indicates the start of a new image
How can I detect the end of an initial image?

ct=ChangeType.SUB_IMAGE and segmentType=null or SegmentType.SEG_END indicates the end of a new image
When I change Subscription how do I safely ignore messages for a previous subscription?

All ChangeMessages carry have id=<request id> this allows safe disposal during subscription change

Coarse vs Fine Grain Subscriptions

It is preferable to use coarse grain subscriptions (subscribe to a super-set) rather than fine grain (specific market ids).

If you find yourself frequently changing subscriptions you probably want to find a wider super-set to subscribe to

{"op":"marketSubscription","id":2,"marketFilter":{"marketIds":["1.120684740"],"bspMarket":true,"bettingTypes":
["ODDS"],"eventTypeIds":["1"],"eventIds":["27540841"],"turnInPlayEnabled":true,"marketTypes":["MATCH_ODDS"],"
countryCodes":["ES"]},"marketDataFilter":{}}

Market data field filtering / MarketDataFilter

A market data filter restricts the fields that you get back (and only if the fields have changed).

Key fields:

fields - A set of field filter flags (see below)
ladderLevels - For depth based ladders the number of levels to send (1 to 10). 1 is best price to back or lay etc.

The field filter flags are defined as:

Filter name Fields: Type Description

EX_BEST_OF
FERS_DISP

bdatb,
bdatl

level,
price,
size

Best prices including - depth is controlled by ladderLevels (1 to 10) - The virtual price stream is Virtual Bets Please note:
updated ~150 m/s after non-virtual prices. Virtual prices are calculated for all ladder levels.

EX_BEST_OF
FERS

batb, batl level,
price,
size

Best prices not including - depth is controlled by ladderLevels (1 to 10)Virtual Bets

EX_ALL_OFFE
RS

atb, atl price,
size

Full available to BACK/LAY ladder

EX_TRADED trd price,
size

Full traded ladder

EX_TRADED_
VOL

tv size Market and runner level traded volume

EX_LTP ltp price Last traded price

EX_MARKET_
DEF

marketDe
finition

MarketD
efinition

Send market definitions.

SP_TRADED spb, spl price,
size

Starting price ladder

SP_PROJECT
ED

spn, spf price Starting price projection prices

Examples

Multiple field filters may be combined; a subscription message that contains data fields should look like the following:

{"op":"marketSubscription","id":2,"marketFilter":{"marketIds":["1.120684740"]},"marketDataFilter":{"fields":
["EX_BEST_OFFERS_DISP","EX_BEST_OFFERS","EX_ALL_OFFERS","EX_TRADED","EX_TRADED_VOL","EX_LTP","EX_MARKET_DEF","

 SP_TRADED","SP_PROJECTED"]}}

The below example shows how to correctly use the marketDataFilter: ladderLevels

{"op": "marketSubscription", "id": 1, "marketFilter": { "marketIds": ["1.134085859"] }, "marketDataFilter": { "ladderLevels": 2, "fields": ["EX_MARKET_DEF",
"EX_BEST_OFFERS"] } }

Subscriptions with no matching markets

We don't verify your subscription criteria as you could potentially subscribe to either a wild card (which would include future markets) or a future
marketid which we do not have yet but would send on arrival

Ladder Levels Behaviour

When bdatb and bdatl are sent with an empty array ("bdatb:[]"), this indicates that there's an update but this has been filtered out due to the
"ladderLevels" marketDataFilter i.e. the update falls outside of the "ladderLevels" specified.

Correctly configuring field filters

https://docs.developer.betfair.com/display/1smk3cen4v3lu3yomq5qye0ni/Additional+Information#AdditionalInformation-Virtual

MC / MarketChangeMessage

This is the ChangeMessage stream of data we send back to you once you subscribe to the market stream.

Key fields:

<as for ChangeMessage>
mc / MarketChange - this list of market changes contains the changes the markets that you have subscribed to.

img / Image - replace existing prices / data with the data supplied: it is not a delta (or null if delta)
marketDefinition / MarketDefinition - this is sent in full (but only if it has changed)
rc / RunnerChange - this is sent to supply the details of a runner (namely prices)

con / Conflated = true - if this is sent then more than one change is combined in this message (purely informational).
Values - these are only sent if the value has changed.Please note:

tv - Traded Volume
ltp - Last Traded Price
spn - Starting Price Near
spf - Starting Price Far

Level / Depth Based Ladders (level, price, size - triples - keyed by level):
size=0 - indicates a remove
batb / batl - Best Available To Back / Best Available To Lay (non-virtual)
bdatb / bdatl - Best Display Available To Back / Best Display Available To Lay (virtual)

Price point / full depth Ladders (price, size - tuples - keyed by price):

size=0 - indicates a remove
atb / atl - Available To Back / Available To Lay (these are the raw / full depth non-virtual prices)
spb / spl - Starting Price (Available To) Back / Starting Price (Available To) Lay (please be aware that these values are
aligned with atb / atl)
trd - Traded

Building a price cache

Most of the change based data (RunnerChange) is delta based - this means a few rules:

img / Image - if this is set to true then you should replace this item in your cache
Values - the values sent are nullable & are not sent if they are not changed (i.e. if tv has not changed then there will be no field in the message)
Level / Depth Based ladders

[0, 1.2, 20] -> Insert / Update level 0 (top of book) with price 1.2 and size 20
[0, 1.2, 0] -> Remove level 0 (top of book) i.e. ladder is now empty

Price point / full depth ladders
[1.2, 20] -> Insert / Update price 1.2 with size 20
[1.2, 0] -> Remove price 1.2 i.e. there is no size at this price

Correctly configuring field filters can help by:

Reducing the size (and time) of initial images
Reducing the rate of change (as only changes matching your field filter are sent)

Examples

You will always receive an update at every position in the ladder that changed so you'll never have to assume anything based on the message
you receive.

Seeing [position,0,0] means that there’s nothing at that position anymore (and hence [0,0,0] means there’s nothing in the entire ladder anymore)

Placed the first bet on a selection

`"batl":[[0,1.4,2],[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0],[7,0,0],[8,0,0],[9,0,0]]`

Placed a second bet that didn't disturb the first bet's position

`"batl":[[1,1.5,2]]`

Placed a third bet that bumped the previous two down the ladder

`"batl":[[2,1.5,2],[1,1.4,2],[0,1.3,2]]`

Cancelled the top position causing the other positions to move up (and the bottom position to become empty)

 `"batl":[[2,0,0],[1,1.5,2],[0,1.4,2]]`

Cancelled by market to remove the remaining 2 positions in one go

MarketDefinition Fields

The following fields are returned within the marketDefintition.

Field Name Description Type

Id Market Id - the id of the market

Venue The venue - applies to horse racing and greyhound markets only string

bspMarket If 'true' the market supports Betfair SP betting boolean

turnInPlayEnabled If 'true' the market is set to turn in-play boolean

persistenceEnabled If 'true' the market supports 'Keep' bets if the market is to be turned in-play boolean

marketBaseRate The commission rate applicable to the market double

eventId The unique id for the event string

eventTypeId The unique eventTypeId that the event belongs to string

numberOfWinners The number of winners on a market integer

bettingType The market betting type i.e. ODDS,ASIAN_HANDICAP_DOUBLE_LINE, ASIAN_HANDICAP_SINGLE_LINE string

marketType Market base type string

marketTime The market start time string

suspendTime The market suspend time string

bspReconciled True if the market starting price has been reconciled boolean

complete If false, runners may be added to the maket

inPlay True if the market is currently in play boolean

crossMatching True if cross matching is enabled for this market. boolean

runnersVoidable True if runners in the market can be voided boolean

numberOfActiveRunn
ers

The number of runners that are currently active. An active runner is a selection available for betting integer

betDelay The number of seconds an order is held until it is submitted into the market. Orders are usually delayed when the
market is in-play

boolean

status The status of the market, for example OPEN, SUSPENDED, CLOSED (settled), etc. string

regulators The market regulators string

discountAllowed Indicate whether or not the users discount rate is taken into account on this market boolean

timezone This is the timezone in which the event is taking place string

openDate The scheduled start date and time of the event. This is GMT by default date

version A non-monotonically increasing number indicating market changes

name The name of the market string

eventName The name of the event string

OrderSubscriptionMessage

This subscription type is used to receive order changes; the subscription message has one type of filter

orderFilter (optional)

OrderFilter

This optional filter already filters by your account; but additional data shaping is supported

 `"batl":[[1,0,0],[0,0,0]]`

Filter name Type Mandatory Default Description

accountIds Set<Int
eger>

No null This is for internal use only & should not be set on your filter (your subscription is already locked to your
account).

includeOverallPositi
on

Boolean No true Returns overall / net position (OrderRunnerChange.mb /)OrderRunnerChange.ml

customerStrategyRe
fs

Set<Stri
ng>

No null Restricts to specified customerStrategyRefs (specified in) ; this will filter orders and placeOrders
StrategyMatchChanges accordingly (Note: overall position is not filtered)

partitionMatchedBy
StrategyRef

Boolean No false Returns strategy positions (OrderRunnerChange.smc=Map<customerStrategyRef,
StrategyMatchChange>) - these are sent in delta format as per overall position.

Example

{"op":"orderSubscription","orderFilter":{"includeOverallPosition":false,"customerStrategyRefs":["betstrategy1"],"partitionMatchedByStrategyRef":true},"
segmentationEnabled":true}

OCM / OrderChangeMessage

This is the ChangeMessage stream of data we send back to you once you subscribe to the order stream.

Key fields:

<as for ChangeMessage>
oc / OrderAccountChange - the modifications to account's orders (will be null on a heartbeat)

closed - indicates when the market is closed
id / Market Id - the id of the market the order is on
fullImage - replace existing data at market level with the data supplied: it is not a delta (or null if delta)
orc / Order Changes - a list of changes to orders on a runner

fullImage - replace existing data at runner level with the data supplied: it is not a delta (or null if delta)
id / Selection Id - the id of the runner (selection)
hc / Handicap - the handicap of the runner (selection) (null if not applicable)
uo / Unmatched Orders - orders on this runner that are unmatched

Every order change is sent in full; the transient on a change to EXECUTION_COMPLETE is sent (but it would not be
sent on initial image)
id / Bet Id - the id of the order
p / Price - the original placed price of the order
s / Size - the original placed size of the order
bsp / BSP Liability - the BSP liability of the order (null if the order is not a BSP order)
side / Side - the side of the order
status / Status - the status of the order (E = EXECUTABLE, EC = EXECUTION_COMPLETE)
pt / Persistence Type - whether the order will persist at in play or not (L = LAPSE, P = PERSIST, MOC = Market On
Close)
ot / Order Type - the type of the order (L = LIMIT, MOC = MARKET_ON_CLOSE, LOC = LIMIT_ON_CLOSE)
pd / Placed Date - the date the order was placed
md / Matched Date - the date the order was matched (null if the order is not matched)
cd / Cancelled Date - the date the order was cancelled (null if the order is not cancelled)
ld / Lapsed Date - the date the order was lapsed (null if the order is not lapsed)
lsrc/Lapse Status Reason Code - the reason that some or all of this order has been lapsed (null if no portion of the
order is lapsed)
avp / Average Price Matched - the average price the order was matched at (null if the order is not matched
sm / Size Matched - the amount of the order that has been matched
sr / Size Remaining - the amount of the order that is remaining unmatched
sl / Size Lapsed - the amount of the order that has been lapsed
sc / Size Cancelled - the amount of the order that has been cancelled
sv / Size Voided - the amount of the order that has been voided
rac / Regulator Auth Code - the auth code returned by the regulator
rc / Regulator Code - the regulator of the order
rfo / Reference Order - the customer supplied order reference
rfs / Reference Strategy - the customer supplied strategy reference used to group orders together - default is ""

Price point / full depth Ladders (price, size - tuples - keyed by price) of matches:
mb / Matched Backs - matched amounts by distinct matched price on the Back side for this runner
ml / Matched Lays - matched amounts by distinct matched price on the Lay side for this runner

Building an order cache

An order cache is somewhat simpler as orders are sent in full (on change) and only matches need delta merging

fullImage - if the market or runner's fullImage value is set to true then you should replace this item in your cache N.B. it is possible for the
fulllImage flag to sent with an update for a market/runner which indicates you no longer have any position on that market/runner and it can empty
be removed from your cache completely
Orders - replace each order according to order id.
Price point / full depth ladders

[1.2, 20] -> Insert / Update price 1.2 with size 20
[1.2, 0] -> Remove price 1.2 i.e. there is no size at this price
An empty list of points also means the ladder is now empty

http://orderrunnerchange.ml/
http://docs.developer.betfair.com/display/1smk3cen4v3lu3yomq5qye0ni/placeOrders#placeOrders-Operation

Example Output of Order Stream Message on Connection/Re-connection

Here's an example showing the data provided following a connection/re-connection to the Order Stream API. The example shows matched backs on two
separate markets one of which has a size remaining of 0.25.

 Example of Order Stream Output (reconnection) - with size remaining

{
 "op": "ocm",
 "id": 6,
 "initialClk": "GpOH0JwBH762w50BHKKomJ0BGpzR5ZoBH5mWsJwB",
 "clk": "AAAAAAAAAAAAAA==",
 "conflateMs": 0,
 "heartbeatMs": 5000,
 "pt": 1468943673782,
 "ct": "SUB_IMAGE",
 "oc": [{
 "id": "1.125657695",
 "orc": [{
 "fullImage": true,
 "id": 48756,
 "mb": [
 [1.4, 2]
]
 }]
 }, {
 "id": "1.125657760",
 "orc": [{
 "fullImage": true,
 "id": 151478,
 "uo": [{
 "id": "71352090695",
 "p": 12,
 "s": 5,

Currencies

Market subscriptions - are always in underlying exchange currency - GBP. The default roll-up for GBP is £1 for and , batb / batl bdatb / bdatl
This means that stakes of less than £1 (or currency equivalent) are rolled up to the next available price on the odds ladder. For there is atb / atl
no roll-up. Available volume is displayed at all prices including those with less than £2 available.

Orders subscriptions - are provided in the currency of the account that the orders are placed in.

Unmatched Orders

New subscriptions: Will receive an initial image with only E - Executable orders (unmatched).

Live subscriptions: Will receive a transient of the order to EC - Execution Complete as the order transits into that state (allowing you to remove
the order from your cache).

Please note: EXECUTION_COMPLETE (fully matched) orders are only returned when transitioning from EXECUTABLE to
EXECUTION_COMPLETE. The full details of EXECUTION_COMPLETE orders can only be viewed using listCurrentOrders/listMarketBook
using orderProjections.

Market Level Snapshots

During normal streaming, you may on rare occasions receive a market-level snapshot, in which case you should replace the item in your cache.
The update will be a fullImage, as shown in the example below

{"clk": "AIElAJgiAIYjAMAhAOsm", "oc": [{"orc": [{"uo":
[{"status": "E", "rfs": "", "sm": 0, "pt": "L", "sr": 2, "rc": "REG_GGC", "sv": 0, "side": "B", "p": 990, "s": 2, "pd": 1603894536000, "sl":
0, "sc": 0, "ot": "L", "rfo": "", "id": "215144775671", "rac": ""}], "id": 30246, "fullImage": true}], "id": "1.174743281", "fullImage": true}],
"pt": 1603895058618, "op": "ocm"}

 "side": "B",
 "status": "E",
 "pt": "L",
 "ot": "L",
 "pd": 1468919099000,
 "md": 1468933833000,
 "avp": 12,
 "sm": 4.75,
 "sr": 0.25,
 "sl": 0,
 "sc": 0,
 "sv": 0
 }],
 "mb": [
 [12, 4.75]
]
 }]
 }]
}

Remaining 0.25 is then matched on marketId 1.125657760

 Example of Order Stream Output - with size remaining matched

 {
 "op": "ocm",
 "id": 10,
 "initialClk": "GtD10ZwBH5OJxZ0BHK75mZ0BGsKq6JoBH4THsZwB",
 "clk": "AAAAAAAAAAAAAA==",
 "conflateMs": 0,
 "heartbeatMs": 5000,
 "pt": 1468944647413,
 "ct": "SUB_IMAGE",
 "oc": [{
 "id": "1.125670254",
 "orc": [{
 "fullImage": true,
 "id": 5643663
 }]
 }, {
 "id": "1.125657760",
 "orc": [{
 "fullImage": true,
 "id": 151478,
 "mb": [
 [12, 5]
]
 }]
 }, {
 "id": "1.125657695",
 "orc": [{
 "fullImage": true,
 "id": 48756,
 "mb": [
 [1.4, 2]
]
 }]
 }]
 }

Heartbeat / HeartbeatMessage

This is an explicit heartbeat request (in addition to server heartbeat interval which is automatic).

This functionality should not normally be necessary unless you need to keep a firewall open.

Re-connection / Re-subscription

If a client is disconnected a client may connect, authenticate and re-subscribe.

Prerequisite steps:

Store your subscription criteria (re-subscribe will only work correctly with identical subscription criteria.
Store initialClk (normally only initial image) & Clk (normally on every non-segmented message or a SEG_END) on any change message they are
sent on.

Connection is broken.

Connect & Authenticate as normal
Subscribe setting initialClk and Clk to the last values sent on the subscription
Change message with ChangeType.RESUB_DELTA is sent - this will patch your cache
Some markets might have img=true set indicating they are either new or can't be patched.

Performance Considerations

Here are a few tips on performance which are worth bearing in mind:

Currency Support

The Exchange Stream API supports GBP currency only.

Those looking to convert data from GBP to a different currency should use to do so.listCurrencyRates

Do I need to use HeartbeatMessage?

No - under normal circumstances the subscription level ChangeType.HEARTBEAT is an acceptable guarantee of connection health.

Use the HeartbeatMessage only if you need to keep a firewall open - as it will incur some performance penalty (as a response will block your
connection)

Easiest way to implement re-subscribe

Store any new subscription message you send as a "pending subscription"
Store this as a "active subscription" once you get your initial image
Update the initialClk & clk on the subscription message with any non-null values
Resend this message after re-connecting

Performance tips

A single market subscription & a subscription to all markets have an identical latency:
Cost is identical as the two subscriptions above would evaluate in sequence and thus with the same average latency.
Initial image is more costly to send than extra updates.
Limiting data with appropriate filters reduces initial image time

Segmented data will always out perform non-segmented data:
You will be processing a buffer while another is in-flight and another is being prepared to send

Writes to your connection are directly effected by how quickly you consume data & clear your socket's buffer
Consuming data slowly is effectively identical to setting conflation.
If you receive con=true flag on a market - then you are consuming data slower than the rate of delivery.

Currencies

https://docs.developer.betfair.com/display/1smk3cen4v3lu3yomq5qye0ni/listCurrencyRates

Runner Removals on the Order Stream

When a Rule 4 Runner Removal occurs in a Horse Race the price of matched bets on remaining runners are reduced by a Reduction Factor.

For these matched bets, you will receive on the Order Stream both a uo for the affected bet and the relevant updates to mb or ml (reducing the matched
volume at the original matched price and adding volume at the new reduced price).

Initial bet placement at price 12

{"op":"ocm","id":2,"clk":"AK0CAPsBALEC","pt":1467219304831,"oc":[{"id":"1.102151675","orc":[{"fullImage":true,"i
d":6113662,"uo":[{"id":"10822867886","p":12,"s":2,"side":"B","status":"E","pt":"L","ot":"L","pd":1467219304000,"
sm":0,"sr":2,"sl":0,"sc":0,"sv":0,"rac":"","rc":"REG_GGC"}]}]}]}

Bet fully matched at price 12

{"op":"ocm","id":2,"clk":"AK0CAPsBALMC","pt":1467219316709,"oc":[{"id":"1.102151675","orc":[{"id":6113662,"uo":
[{"id":"10822867886","p":12,"s":2,"side":"B","status":"EC","pt":"L","ot":"L","pd":1467219304000,"md":14672193160
00,"avp":12,"sm":2,"sr":0,"sl":0,"sc":0,"sv":0}],"mb":[[12,2]]}]}]}

Runner removed (and so bet reduced in price to 9.47)

{"op":"ocm","id":2,"clk":"AK0CAJACALsC","pt":1467219376611,"oc":[{"id":"1.102151675","orc":[{"id":6113662,"uo":
[{"id":"10822867886","p":12,"s":2,"side":"B","status":"EC","pt":"L","ot":"L","pd":1467219304000,"md":14672193160
00,"avp":9.47,"sm":2,"sr":0,"sl":0,"sc":0,"sv":0}],"mb":[[9.47,2],[12,0]]}]}]}

See the avp in the uo record showing the new price of 9.47 and see the two entries in mb, one to remove the previously added size of 2 at price point 12
and one to add the size of 2 into the new price point of size 9.47.

Bets placed on the actual removed runner will be voided/lapsed (for matched/unmatched bets respectively) and these will also be sent through on the
Order Stream.

Identifying Cancelled BSP Bets

Whilst BSP bets cannot be cancelled in general, in the scenario where a Limit Price applied to the BSP bet is updated this is modelled as a Cancellation of
the original bet with the original Limit Price and a Place of a new bet with the new Limit Price.

In this scenario, the cancellation of the original bet can be identified by looking at the "Cancelled Date" field ("cd") on the "Unmatched Orders" object ("uo")
- N.B. there will be no "Size Cancelled" ("sc") because a BSP bet does not have any Size before reconciliation.

Line Markets

Line markets being sent on the Market Stream can be identified by the bettingType field of MarketDefinition (with value of "LINE").

The MarketDefinition of Line markets provide some additional fields that will be null for all other types,

lineMaxUnit - maximum value for the outcome, in market units for this market (eg 100 runs).
lineMinUnit - minimum value for the outcome, in market units for this market (eg 0 runs).
lineInterval - the odds ladder on this market will be between the range of lineMinUnit and lineMaxUnit, in increments of the interval value.e.g. If
lineMinUnit=10 runs, lineMaxUnit=20 runs, lineInterval=0.5 runs, then valid odds include 10, 10.5, 11, 11.5 up to 20 runs.

For updates for Orders on Line markets received on the Order Stream be aware of how the following properties behave,

price - line markets operate at even-money odds of 2.0. However, price for these markets refers to the line positions available as defined by the
markets min-max range and interval steps.
side - for Line markets a 'B' bet refers to a SELL line and an 'L' bet refers to a BUY line.
averagePriceMatched - this value is not meaningful for activity on Line markets and is not guaranteed to be returned or maintained for these
markets.

Market subscriptions - are always in underlying exchange currency - GBP. The default roll-up for GBP is £1 for and , batb / batl bdatb / bdatl
This means that stakes of less than £1 (or currency equivalent) are rolled up to the next available price on the odds ladder. For there is atb / atl
no roll-up. Available volume is displayed at all prices including those with less than £2 available.

Orders subscriptions - are provided in the currency of the account that the orders are placed in.

Stream API Status - latency

Every , for order and market stream, contains a ' field which will give an indication on the health of the stream data provided by ChangeMessage status'
the service. This is feature will be used in addition to the heartbeat mechanism which only gives an indication that the service is up but doesn't provide an
indication of the latency of the data provided.

By default, when the stream data is up to date the value is set to null and will be set to when the stream data is unreliable (i.e. not all bets and markets 503
changes will be reflected on the stream) due to an increase in push latency. Clients disconnect if status 503 is returned; when the stream shouldn't
recovers updates will be sent containing the latest data. The status is sent per each subscription on heartbeats and change messages.

Example of message containing the status field:

{"op":"ocm","id":3,"clk":"AAAAAAAA","status":503,"pt":1498137379766,"ct":"HEARTBEAT"}

{"op":"mcm","id":2,"clk":"AAAAAAAA","status":503,"pt":1498137381621,"ct":"HEARTBEAT"

Stream Health

In addition to the Stream API status field we'd recommend the below as best practice for monitoring the health of the Stream API:

Use heartbeat messages to confirm Stream API is healthy and that you are still connected
Messages with ChangeType.HEARTBEAT will be sent at the requested interval if no change has occurred.
If no message of any kind is received for 2 x heartbeat interval then you may no longer be connected so initiate a fresh connection (use re-
subscribe to continue where you left off)
Re-connect code should contain back offs to avoid spamming the service if you are unable to connect for a prolonged period for any reason
if you receive con=true flag on a market - then you are consuming data slower than the rate of deliver. If the socket buffer is full we won't attempt
to push; so the next push will be conflated.

Lapse Status Reason Code Possible Values

This field will now be present in some cases on the Order object of the Order Stream to denote the reason that some or all of the order is lapsed. It will be
null if no portion of the order is lapsed or if the order lapsed for some reason other than those listed below.

The full list of currently supported values for this field is:

Code Description

MKT_UNKNO
WN

The market was unknown, presumably removed from the matcher (closed) between bet placement and matching.

MKT_INVALID The market was known about, but in an invalid state.

RNR_UNKNO
WN

The runner was unknown, presumably removed between bet placement and matching.

TIME_ELAPSED The bet was waiting in the queue too long, so was lapsed for safety.

CURRENCY_U
NKNOWN

The bet's currency ID was not recognised by the matcher.

PRICE_INVALID The bet's price was invalid, e.g. outside the defined ladder for the market.

MKT_SUSPEN
DED

The market was suspended at the time the bet came to be matched.

MKT_VERSION The bet had a maximum market version set, and the market's version on matching was greater than this.

LINE_TARGET The bet was on a line market, but was requested targeting profit or payout.

LINE_SP The bet was on a line market, but was either a BSP bet directly, or requested to PERSIST_TO_SP.

SP_IN_PLAY The bet was a BSP bet that had somehow come to be placed after turn-in-play.

SMALL_STAKE The bet's stake was worth less than half a penny in GBP.

PRICE_IMP_T
OO_LARGE

When the bet came to be matched, the price available was better than its best permitted price, suggesting a significant shift in the
market, presumably due to a major incident, which may have rendered the bet unwanted.

Offline Documentation

An offline version of the Exchange Stream API is available via ExchangeStreamAPI-March2018.pdf

Please note, the full Exchange Stream API specification is available online here

https://docs.developer.betfair.com/download/attachments/6094862/ExchangeStreamAPI-March2018.pdf?version=3&modificationDate=1534331876000&api=v2
http://github.com/betfair/stream-api-sample-code/blob/master/ESASwaggerSchema.json

Known Issues

Markets moved under a new eventId - In certain circumstances, a market may move from one eventId to another due to actions performed by
our Exchange Operations team. This will cause the Exchange Stream API to hold two copies of the market in its cache and the initial image of
the market provided will therefore contain both copies of the market. In these circumstances further Stream API updates will only be sent for the
latest version of the market. You can identify the latest version of the market using the "version" parameter returned in the initial image and
should only store the market with the higher version number.
Trades with volume = 0 for all traded price points- e.g. [{"trd":[[1.75,0],[1.5,0],[1.25,0],[1.32,0],[1.57,0],[2.86,0],[1.82,0],[2.36,0],[1.76,0],

 - This is an artefact of settlement kicking off that moves the bets away from trading DB into the longer-term [2.48,0],[1.51,0],[2.98,0],[1.26,0]...
store. Any price change notifications triggered during this process will result in attempts to reconstruct the market view based on no bets being
available and would result in this kind of notification being sent.

	Exchange Stream API

